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Motivation

• Fires in pressurized vehicles (aircraft, spacecraft 
or submarines) are extremely hazardous 

▫ Small compartments

▫ Difficulty to escape▫ Difficulty to escape

• Emphasis on fire prevention:

▫ Material flammability

▫ Effect of environmental conditions (oxygen 
concentration, pressure, radiant heat flux, etc) on 
ignition
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Today’s Talk
• Understand the physical mechanisms responsible for 

ignition of solid combustibles under low pressure

• Aircraft cabin pressure is typically pressurized to a "cabin 
altitude" of 8000 feet or less (~ 75 kPa)

• Are reduced pressure environments a higher fire risk?• Are reduced pressure environments a higher fire risk?
▫ Piloted ignition experiments with air at low P 

� Forced Ignition and Spread Test (FIST) apparatus at UC 
Berkeley to analyze material flammability

▫ Analytical explanation of results

12 psi 6 psi
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Lower ambient pressure 

can be found at…

• High Altitude Lhasa, Tibet– 3,650 m
population 250,000

Quito, Ecuador- 2,850 m
population 2M

• Inside Aircraft

• Inside Spacecraft
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How does a solid fuel ignite?

Piloted ignition process:

1. Solid heating & pyrolysis

2. Mixing of gaseous fuel and air

3. Chemistry: fuel/air mixture 3. Chemistry: fuel/air mixture 
reaches lean flammability limit 
at high temperature igniter

4. If sufficient pyrolysis gases are 
generated: a diffusion flame will 
anchor on solid (burning) �
critical mass flux at ignition
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Possible Fire Scenario

• Heat source: 
electronic component 
overheating
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• Fuel: polymeric 
materials used in 
panels, blocks, covers

• Ignition source: spark 
from electrical arching



Forced Ignition and Spread Test (FIST)

Igniter
y

x

u

IR heater

Fuel

q”

Variables:
-air flow velocity
-incident heat flux
-ambient pressure

Material:  PMMA 

Igniterx

Data logging scale

Pressure Chamber

Fuel
sample holder

Measure :
-Tsurface vs. time� tig, time to ignite

-Mass vs. time � (dm/dt )|tig mass loss rate at ignition 
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FIST Apparatus
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Video of Test
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Air velocity =0.4 m/s , q”= 16 kW/m2, P=12 psi
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• 100 kPa & Air (21% O2 by volume) -Raw Data

Heat flux q”=16 kW/m2, Air flow velocity = 0.4 m/s
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Experimental Results
• Pressure Comparison : 55, 83 & 100 kPa (Raw Data)
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Experimental Results
• Ignition Delay & Mass Loss Rate at Ignition vs. Total Pressure
Air (21% O2 by volume) at 0.4 m/s , q”=16 kW/m
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Visual Observations

• Different surface behavior: bubble formation, 
size and bursting characteristics
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• Flame establishment over solid surface also 
different

3 psi (21 kPa) 12 psi (83 kPa)

3 psi (21 kPa) 12 psi (83 kPa)



Effect of Pressure (Part1)

• Ignition delay time, tig :
▫ tig= theating + tmixing/transport +tinduction

• Heating time: convective heat loss over flat plate

▫ Forced flow: 3
1

2
1

PrRe∝h
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▫ Natural convection:

▫ Mixed flow

Re= ρUL/µ , Re~ P            
Pr≠f(P) h~P1/2

Ideal gas: Gr ~ P2

As pressure decreases, convective heat loss of material to 
surroundings is lower ���� heats more rapidly
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Simplified Analysis
Heat Transfer Coefficient

• h ≈k/δT

• At the sample 
location,  h 5

6
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K
)
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69 kPa

83 kPa
location,  h 
decreases by 13% 
when the pressure 
is reduced from 
100 kPa to 75 kPa
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Simplified Analysis

Species Concentration

• Reduced 
pressure leads to 
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Simplified Analysis

• To determine mass 
loss rate: 
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• At lower P, required 
mass flow rate of 
fuel to reach lean 
flammability limit 
at igniter location is 
reduced
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Comparison of Trends

• Mass Loss Rate at Ignition vs. Pressure
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Not the same: 
reaching LFL is 
necessary but not 
sufficient 
condition for 
sustained burning!



Current Work
Fire Dynamics Simulator (FDS) 2D model
▫ PMMA is irradiated under a prescribed heat flux � the solid 
decomposes and the products of the pyrolysis ignite in the gas phase.

Premixed flame 
appears in the 
gas phase

21
HRR Temperature

Flame ‘jumps’ 
on to solid fuel 
surface

Diffusion flame 
anchored on 
solid surface 
travels



Current Work
• Fire Dynamics Simulator (FDS) 2D model

▫ Heat release rate/volume:
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Summary & Conclusions
• Experimental results from piloted ignition show that 
tig & m

”
ig decrease with pressure:

▫ At 75 kPa , ∆tig = - 15%
∆mig

”= -7%

• A theoretical explanation provides insight on the 
effect of pressure on:effect of pressure on:
▫ Heat transfer coefficient
▫ Mass loss rate required to reach a flammable mixture

• Next steps include developing a numerical model 
using FDS to compare to experiments

• Overall, a reduction in ambient pressure leads 
to an increased fire risk
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